Join Ads Marketplace to earn through podcast sponsorships.
Manage your ads with dynamic ad insertion capability.
Monetize with Apple Podcasts Subscriptions via Podbean.
Earn rewards and recurring income from Fan Club membership.
Get the answers and support you need.
Resources and guides to launch, grow, and monetize podcast.
Stay updated with the latest podcasting tips and trends.
Check out our newest and recently released features!
Podcast interviews, best practices, and helpful tips.
The step-by-step guide to start your own podcast.
Create the best live podcast and engage your audience.
Tips on making the decision to monetize your podcast.
The best ways to get more eyes and ears on your podcast.
Everything you need to know about podcast advertising.
The ultimate guide to recording a podcast on your phone.
Steps to set up and use group recording in the Podbean app.
Join Ads Marketplace to earn through podcast sponsorships.
Manage your ads with dynamic ad insertion capability.
Monetize with Apple Podcasts Subscriptions via Podbean.
Earn rewards and recurring income from Fan Club membership.
Get the answers and support you need.
Resources and guides to launch, grow, and monetize podcast.
Stay updated with the latest podcasting tips and trends.
Check out our newest and recently released features!
Podcast interviews, best practices, and helpful tips.
The step-by-step guide to start your own podcast.
Create the best live podcast and engage your audience.
Tips on making the decision to monetize your podcast.
The best ways to get more eyes and ears on your podcast.
Everything you need to know about podcast advertising.
The ultimate guide to recording a podcast on your phone.
Steps to set up and use group recording in the Podbean app.
Using NumPy and Linear Algebra for Faster Python Code
Are you still using loops and lists to process your data in Python? Have you heard of a Python library with optimized data structures and built-in operations that can speed up your data science code? This week on the show, Jodie Burchell, developer advocate for data science at JetBrains, returns to share secrets for harnessing linear algebra and NumPy for your projects.
Jodie details how most people begin their data science journey using loops to iterate over values and apply operations sequentially. We talk about how loops are friendly for beginners, being clear to read and easy to debug, but unfortunately don’t scale well, especially with large amounts of data.
Jodie shares some of the basics of linear algebra and how to organize data into vectors. We talk about how the NumPy library leverages those concepts to improve data processing. We discuss how the library includes operations for vector and matrix addition and subtraction, and why these operations are more efficient than loops. We also cover how NumPy stores arrays in memory and when working with them is faster vs when it’s not.
Course Spotlight: Data Cleaning With pandas and NumPy
In this video course, you’ll learn how to clean up messy data using pandas and NumPy. You’ll become equipped to deal with a range of problems, such as missing values, inconsistent formatting, malformed records, and nonsensical outliers.
Topics:
Show Links:
Level up your Python skills with our expert-led courses:
Support the podcast & join our community of Pythonistas
Create your
podcast in
minutes
It is Free