Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2023.04.19.537567v1?rss=1
Authors: Zink, J., Froemel, T., Wittig, I., Fleming, I., Benz, P. M.
Abstract:
The interaction of Eph receptor tyrosine kinases with their transmembrane ligands; the ephrins, is important for the regulation of cell-cell communication. Ephrin-Eph signaling is probably best known for the discrimination of arterial and venous territories by repulsion of venous endothelial cells away from those with an arterial fate. Ultimately, cell repulsion is mediated by initiating the collapse of the actin cytoskeleton in membrane protrusions. Here, we investigated the role of the Ena/VASP family of actin binding proteins in endothelial cell repulsion initiated by ephrin ligands. Human endothelial cells dynamically extended sheet-like lamellipodia over ephrin-B2 coated surfaces. While lamellipodia of control siRNA transfected cells rapidly collapsed, resulting in a pronounced cell repulsion from the ephrin-B2 surfaces, the knockdown of Ena/VASP proteins impaired the cytoskeletal collapse of membrane protrusions and the cells no longer avoided the repulsive surfaces. Mechanistically, ephrin-B2 stimulation elicited the EphB-mediated tyrosine phosphorylation of VASP, which abrogated its interaction with the focal adhesion protein Zyxin. Nck2 was identified as a novel VASP binding protein, which only interacted with the tyrosine phosphorylated VASP protein. Nck links Eph-receptors to the actin cytoskeleton. Therefore, we hypothesize that Nck-Ena/VASP complex formation is required for actin reorganization and/or Eph receptor internalization downstream of ephrin-Eph interaction in endothelial cells, with implications for endothelial navigation and pathfinding.
Copy rights belong to original authors. Visit the link for more info
Podcast created by Paper Player, LLC
view more