Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2023.06.30.547267v1?rss=1
Authors: Zamal, M. Y., Venkataramana, C., Subramanyam, R.
Abstract:
In the phototrophic alphaproteobacteria, photosynthesis is performed by pigment-protein complexes, including the light-harvesting complexes known as LH1 and LH2. The photosystem also encompasses carotenoids to assist in well-functioning of photosynthesis. Most photosynthetic bacteria are exposed to various abiotic stresses, and here, the Rhodobacter (R.) alkalitolerans were extracted from the alkaline pond. We report the comparative study of photosynthetic apparatus of R. alkalitolerans in various light intensities in relation to this bacterium's high pH tolerance ability. We found that as the light intensity increased, the stability of photosystem complexes decreased in normal pH (npH pH 6.8{+/-}0.05) conditions, whereas in high pH (hpH pH 8.6{+/-}0.05) acclimation was observed. The content of bacteriochlorophyll a, absorbance spectra, and circular dichroism data shows that the integrity of photosystem complexes is less affected in hpH compared to npH conditions. Sucrose density and LP-BN of photosystem complexes also shows that LH2 is more affected in npH than hpH, whereas RC-LH1 monomer or dimer has shown interplay between monomer and dimer in hpH although the dimer and monomer both increased in npH. Additionally, the phosphatidylcholine (PC) levels have increased in hpH conditions. Moreover, qPCR data showed that the subunit -c of ATPase levels was overexpressed in hpH. Consequently, the P515 measurement shows that more ATP production is required in hpH, which dissipates the protons from the chromatophore lumen. This could be the reason the photosystem protein complex destabilized due to more lumen acidification. To maintain homeostasis in hpH, the antiporter NhaD expressed more than in the npH condition.
Copy rights belong to original authors. Visit the link for more info
Podcast created by Paper Player, LLC
view more