There is a perception in the community that the hobby of amateur radio is an expensive way to have fun. While it's entirely possible to spend thousands of dollars on equipment, in much the same way that it's possible if your preferred hobby is golf, getting started does not have to require that you start planting money trees.
Lots of fun can be had using cheap amateur radio transceivers that are used all around the world. If you do start with such a radio, the chances are good that you'll come across amateurs who make disparaging remarks about the lack of compliance of such radios.
When I say compliance, I'm talking about specific measurements specified by the International Telecommunications Union, the ITU. When you transmit on a specific frequency, there are rules about how much that signal is allowed to be unintended, or to use the official term, spurious emissions.
Specifically, the signal you transmit has to meet the requirements for the mode you're using and it must also stay within limits on other frequencies. For example, if you have a 2m handheld radio that uses FM, the transmitter must stay within the required width for FM and it's not allowed to transmit above a certain level on any of the harmonic frequencies.
When someone claims that all cheap radios are non-compliant, they're saying that such radios are either not transmitting a valid FM signal, or that the levels of the signal exceed the limits specified by the ITU.
Given that such radios are in wide use, Randall VK6WR, Glynn VK6PAW and I got together to see if we could come up with something a little more scientific in the way of comment about such radios. With access to Randall's HP 8920A RF Communications Test Set we came up with a repeatable way to test a radio and then went to the local HAMfest where we subjected a pile of radios to our tests. In total we did 75 tests. Overall we tested 39 distinct models across 12 brands.
So, what did we learn?
All so-called "name brand" radios were fully compliant.
All radios that were sold in Australia by Australian distributors were compliant.
Baofeng radios made up the largest sample of inexpensive radios. Seven out of the 26 tested were compliant, eight were non-compliant and the rest, 11 were borderline. More on that shortly.
We also tested many radios that had been purchased online. We didn't test enough of each model to make specific comments, but it's worth pointing out that half of all the online radios were compliant.
Now, I mentioned borderline compliance. What we learnt was that there were some radios that fell within 6 dB of being compliant. The HP test set hasn't been calibrated for a while and we felt that allowing for a 3 dB random measurement error and a 3 dB systematic error would prevent us from marking a radio non-compliant when in fact it was. We categorised 16 radios as borderline.
Our report is of course public. You can find it on my GitHub page as both a PDF and a markdown document.
Whilst we were writing our report, we discovered uncorroborated suggestions that some radios might fail an emissions test after suffering unspecified damage in the output filtering stages. We looked at the schematic of one radio that suggests that a simple capacitor failure might cause a filter to fail without preventing the transmitter from operating.
This might mean that a non-compliant transmitter might be made compliant again by replacing the faulty capacitor. We haven't tried and we don't know if a failed capacitor actually makes a radio non-compliant or not, or even if such a failure could occur and if-so, how.
In other words, this might be a red-herring, we just don't know.
One other comment worth pointing out is that it was suggested that some radios might use a specifically designed antenna to suppress the second harmonic. Given that some radios failed only on the second harmonic spurious emission requirement, but not the third, this seems plausible. All radios we tested had removable antennas and were tested without an antenna, since compliance relates to the transmitter, not the antenna. It does raise a more interesting question. What happens if you fit a different antenna to the radio?
One adage that stands is that "you get what you pay for", but given the amount of cheap testing equipment available, it's relatively easy to test every handset in your shack.
I'm Onno VK6FLAB
Create your
podcast in
minutes
It is Free