Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: What do coherence arguments actually prove about agentic behavior?, published by sunwillrise on June 1, 2024 on LessWrong.
In his first discussion with Richard Ngo during the 2021 MIRI Conversations, Eliezer retrospected and lamented:
In the end, a lot of what people got out of all that writing I did, was not the deep object-level principles I was trying to point to - they did not really get Bayesianism as thermodynamics, say, they did not become able to see Bayesian structures any time somebody sees a thing and changes their belief.
What they got instead was something much more meta and general, a vague spirit of how to reason and argue, because that was what they'd spent a lot of time being exposed to over and over and over again in lots of blog posts.
Maybe there's no way to make somebody understand why corrigibility is "unnatural" except to repeatedly walk them through the task of trying to invent an agent structure that lets you press the shutdown button (without it trying to force you to press the shutdown button), and showing them how each of their attempts fails; and then also walking them through why Stuart Russell's attempt at moral uncertainty produces the problem of fully updated (non-)deference; and hope they can start to see the
informal general pattern of why corrigibility is in general contrary to the structure of things that are good at optimization.
Except that to do the exercises at all, you need them to work within an expected utility framework. And then they just go, "Oh, well, I'll just build an agent that's good at optimizing things but doesn't use these explicit expected utilities that are the source of the problem!"
And then if I want them to believe the same things I do, for the same reasons I do, I would have to teach them why certain structures of cognition are the parts of the agent that are good at stuff and do the work, rather than them being this particular formal thing that they learned for manipulating meaningless numbers as opposed to real-world apples.
And I have tried to write that page once or twice (eg "coherent decisions imply consistent utilities") but it has not sufficed to teach them, because they did not even do as many homework problems as I did, let alone the greater number they'd have to do because this is in fact a place where I have a particular talent.
Eliezer is essentially claiming that, just as his pessimism compared to other AI safety researchers is due to him having engaged with the relevant concepts at a concrete level ("So I have a general thesis about a failure mode here which is that, the moment you try to sketch any concrete plan or events which correspond to the abstract descriptions, it is much more obviously wrong, and that is why the descriptions stay so abstract in the mouths of everybody who sounds more optimistic than I am.
This may, perhaps, be confounded by the phenomenon where I am one of the last living descendants of the lineage that ever knew how to say anything concrete at all"), his experience with and analysis of powerful optimization allows him to be confident in what the cognition of a powerful AI would be like.
In this view, Vingean uncertainty prevents us from knowing what specific actions the superintelligence would take, but effective cognition runs on Laws that can nonetheless be understood and which allow us to grasp the general patterns (such as Instrumental Convergence) of even an "alien mind" that's sufficiently powerful.
In particular, any (or virtually any) sufficiently advanced AI must be a consequentialist optimizer that is an agent as opposed to a tool and which acts to maximize expected utility according to its world model to purse a goal that can be extremely different from what humans deem good.
When Eliezer says "they did not even do as many homework problems as I did," I ...
view more