Large language models (LLMs) with instruction finetuning demonstrate superior generative capabilities. However, these models are resource intensive. To alleviate this issue, we explore distilling knowledge from instruction-tuned LLMs to much smaller ones. To this end, we carefully develop a large set of 2.58M instructions based on both existing and newly-generated instructions. In addition to being sizeable, we design our instructions to cover a broad set of topics to ensure. A thorough investigation of our instruction data demonstrate their diversity, and we generate responses for these instructions using gpt-3.5-turbo. We then exploit the instructions to tune a host of models, dubbed LaMini-LM, of varying sizes, both from the encoder-decoder as well as the decoder-only families. We evaluate our models both automatically (on 15 different NLP benchmarks) and manually. Results show that our proposed LaMini-LM are on par with competitive baselines while being nearly 10 times smaller in size.
2023: Minghao Wu, Abdul Waheed, Chiyu Zhang, M. Abdul-Mageed, Alham Fikri Aji
https://arxiv.org/pdf/2304.14402v1.pdf
view more