GPT-3 has attracted lots of attention due to its superior performance across a wide range of NLP tasks, especially with its in-context learning abilities. Despite its success, we found that the empirical results of GPT-3 depend heavily on the choice of in-context examples. In this work, we investigate whether there are more effective strategies for judiciously selecting in-context examples (relative to random sampling) that better leverage GPT-3’s in-context learning capabilities.Inspired by the recent success of leveraging a retrieval module to augment neural networks, we propose to retrieve examples that are semantically-similar to a test query sample to formulate its corresponding prompt. Intuitively, the examples selected with such a strategy may serve as more informative inputs to unleash GPT-3’s power of text generation. We evaluate the proposed approach on several natural language understanding and generation benchmarks, where the retrieval-based prompt selection approach consistently outperforms the random selection baseline. Moreover, it is observed that the sentence encoders fine-tuned on task-related datasets yield even more helpful retrieval results. Notably, significant gains are observed on tasks such as table-to-text generation (44.3% on the ToTTo dataset) and open-domain question answering (45.5% on the NQ dataset).
2021: Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, L. Carin, Weizhu Chen
https://arxiv.org/pdf/2101.06804v1.pdf
view more