In this episode we discuss DisCo: Disentangled Control for Realistic Human Dance Generation
by Tan Wang, Linjie Li, Kevin Lin, Yuanhao Zhai, Chung-Ching Lin, Zhengyuan Yang, Hanwang Zhang, Zicheng Liu, Lijuan Wang. The paper discusses the challenges of generative AI in creating realistic human-centric dance content for social media, highlighting the need for models to generalize across varied poses and intricate details. In response to these challenges, the authors introduce a new model architecture called DISCO, designed to improve the synthesis of human dance through enhanced generalizability and compositionality. DISCO's performance is supported by extensive results, showing its ability to produce diverse and high-quality dance images and videos.
view more