arxiv preprint - Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation
In this episode, we discuss Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation by Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit Bansal, Jordi Pont-Tuset, Su Wang. The abstract discusses the evaluation of text-to-image models, focusing on ensuring the accuracy between text prompts and generated images through a question generation and answering system. It introduces the Davidsonian Scene Graph (DSG), a strategy intended to improve question quality and answer consistency by creating a structured set of unique, semantic questions. Extensive testing and human assessments have shown DSG's effectiveness, and the release of DSG-1k provides a benchmark for wider usage and evaluation in the field.
Create your
podcast in
minutes
It is Free