In this episode, we discuss To Believe or Not to Believe Your LLM by Yasin Abbasi Yadkori, Ilja Kuzborskij, András György, Csaba Szepesvári. The study investigates uncertainty quantification in large language models (LLMs), focusing on distinguishing large epistemic uncertainty to identify unreliable outputs and potential hallucinations. By employing an information-theoretic metric and a method of iterative prompting based on prior responses, the approach effectively detects high uncertainty scenarios, particularly in distinguishing between cases with single and multiple possible answers. The proposed method outperforms standard strategies and highlights how iterative prompting influences the probability assignments of LLM outputs.
Create your
podcast in
minutes
It is Free